

# Design and Performance of Octave S/C-Band MMIC T/R Modules for Multi-Function Phased Arrays

James J. Komiak, *Senior Member, IEEE*, and Ashok K. Agrawal, *Senior Member, IEEE*

**Abstract**—A complex wideband transmit/receive module that has achieved performance levels superior to any MMIC module will be described. Peak performance within the octave 3.0 to 6.0 GHz band includes a power output of 21 W at S-band and 19 at C-band, a noise figure of 3.9 to 5.0 dB, 30 to 38 dB of receive gain, 25 to 26 dBm output IP<sub>3</sub>, 40 dB of gain control in 256 steps, dual receive channels with independent amplitude and phase control, and an 8-bit phase shifter with less than 1 degree calibrated rms phase error. Total GaAs area is 146 mm<sup>2</sup> with 170 mm of total gate periphery. The module incorporates a compact digital interface, requires only three supply voltages, and utilizes advanced packaging techniques, resulting in a size compatible with a grating lobe free grid spacing.

## INTRODUCTION

MMIC's have the ability to enable new system concepts that could not be brought to fruition without this technology, hence the recent intensity of development activity surrounding the electronically-scanned phased array. Since many potential applications contain functions that can be reduced to a generic set of requirements, wideband components have frequently been the focus of development. The MMIC's and the T/R modules described here were specifically designed for wideband operation, providing continuous octave band coverage from 3.0 to 6.0 GHz.

## ARCHITECTURE

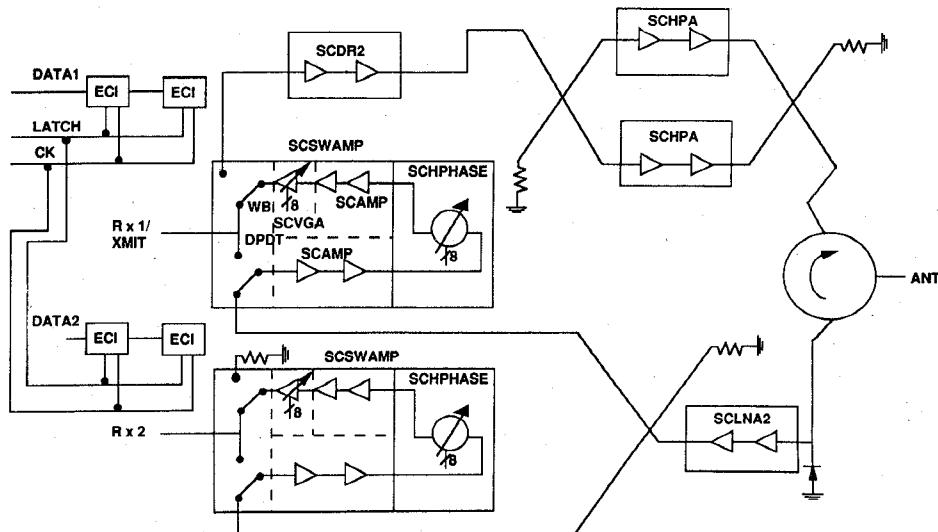
In order to maximize performance and minimize the cost of this module a shared leg architecture shown in Fig. 1 was selected. The shared leg, used for both transmit and receive, includes a variable gain amplifier, phase shifter, and gain blocks. Connection to either the final output amplifiers on transmit or the LNA on receive is accomplished through the use of a DPDT transfer switch. There are several advantages to this architecture over the conventional bidirectional phase shifter approach: 1) it minimizes the number of components since gain stages are shared between transmit and receive; 2) the receive

dynamic range is maximized since gain stages can be distributed before and after the "lossy" phase shifter; 3) the VGA can be used for programmable transmit aperture tapering as well as on receive; 4) the shared leg can be designed as an integrated chip using a versatile high yield MMIC process without degrading module performance specifications. Separate HPA and LNA devices optimized for the specific band of operation insure that advances in device technology of these components, such as HBT and HEMT, can be incorporated with minimal impact.

## Independent Receive Channels

Independent phase and amplitude control channels are implemented on receive. This implementation circumvents many of the difficulties in achieving phase and amplitude tracking between the three complex beamforming networks required of a monopulse radar [1], [2]. If only a single receive channel existed, only the sum channel could be corrected. Since the amplitude and phase errors of the difference channel are generally uncorrelated and larger than the sum channel (180-degree hybrids must be employed rather than in-phase Wilkinsons), the achievable difference beam sidelobe level is higher. With the two receive channel module configuration, the beamformers are greatly simplified. There is no need to form sums and differences from subarrays equidistant from the array centerline, and hence the expense, size, and weight associated with phase-tracked RF cabling has been eliminated. Similarly, difference hybrids have been eliminated, as an extra 180 degree phase shift can be added in the module. Finally, errors in amplitude and phase can be corrected at each frequency to maintain low sidelobes, an extremely important factor since we are dealing with a wideband octave system rather than a narrowband requirement.

## Architecture Implications


The requirements placed on the MMIC's described subsequently are directly descended from the chosen architecture and the system application, but deserve discussion here. Both 8-bits of amplitude and phase control

Manuscript received March 21, 1991; revised June 27, 1991.

J. J. Komiak is with General Electric, Electronics Laboratory, EP3, Room 134, Syracuse, NY 13221.

A. K. Agrawal is with General Electric, Government Electronic Systems Department, Moorestown, NJ 08057.

IEEE Log Number 9104006.

Fig. 1. Block diagram of *S/C*-band T/R module.

have been selected, although less than 30 dB of amplitude range and six-bit accuracy are required by most applications. The philosophy here is one of tolerance funneling to guarantee a low-cost module in manufacturing. The extra bits allow tolerance for finite RF performance distributions of the MMIC's, without paying a resolution/adjustment range penalty for module-to-module tracking or requiring module tuning. Secondly, the shared leg architecture places additional constraints on the circuit design. In particular, any leakage signal from the input to output path will corrupt the response and produce amplitude/phase ripple across frequency. In the ultimate case, if the variable gain amplifier is not placed last, for large gain reductions, the leakage path may actually dominate and phase control may be lost. Placing the VGA last however, requires that the device be capable of a power output commensurate with low IMD products (intermodulation distortion). Leakage can also occur due to bulk GaAs substrate/dielectric mode propagation, common bias networks, and finite transfer switch isolation. Substrate modes are effectively suppressed by careful layout to provide a picket fence of ground vias through the center of the chip. Bias networks should be extensively reactively and *RC* filter decoupled, and switch isolation is obtained by careful multi-stage series/shunt switch design.

#### MMIC CHIP SET

The module described subsequently is composed of a dozen chips of six types, HPA, driver, LNA, switch/amplifier, phase shifter, and interface. Of these the switch/amplifier and phase shifter constitute the shared leg which is used twice in the dual receive channel configuration. This shared leg has been partitioned into an RF-testable two chip set due to cost/yield considerations, an 8-bit phase shifter (SCPHASE), and an integrated "super-chip" incorporating a DPDT transfer switch, an

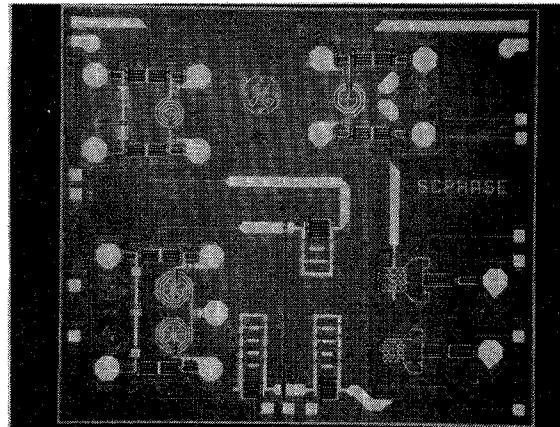



Fig. 2. Phase shifter MMIC (SCPHASE).

8-bit variable gain amplifier, and four stages of gain blocks (SCSWAMP).

#### Phase Shifter

The wafer-probeable phase shifter, shown in Fig. 2, is based on an extensive effort at GE in researching and optimizing phase shifter topology for not only RF performance, but process insensitivity and high yield [3], [4]. The electrical parameters considered are phase ripple, insertion loss, the difference in insertion loss between states, VSWR, and the circuit element values required. Phase ripple and insertion loss between states are important because they impact the complexity of the calibration scheme. A good VSWR is required to minimize interaction between bits as well as between MMIC's. Insertion loss is slightly less important due to the shared leg architecture, i.e., gain can be made up by active elements without degrading IMD or noise figure. Some circuit approaches can be rejected because the circuit element values required are unrealizable due to parasitic effects.

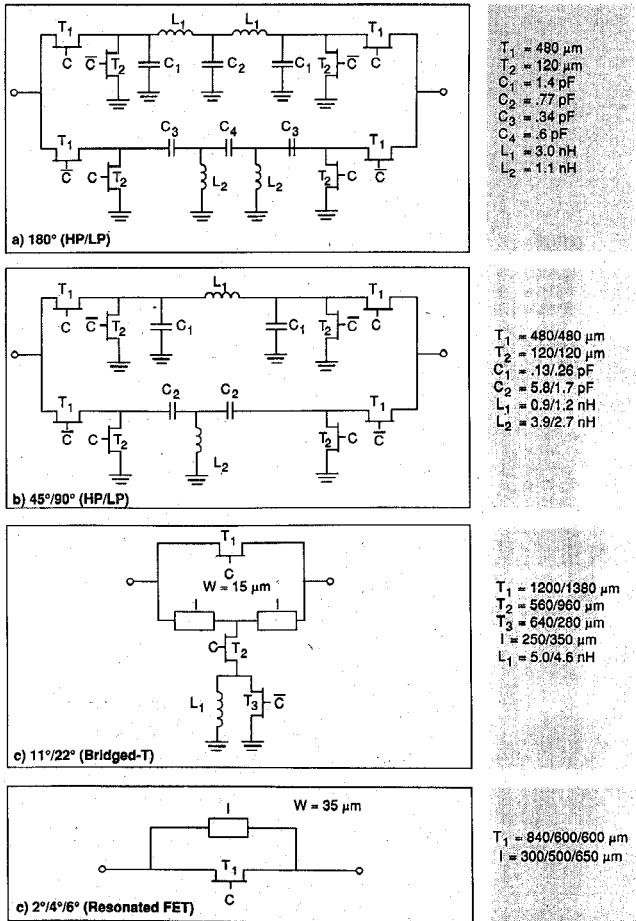



Fig. 3. Schematics of individual phase bits.

Cost and yield limiting factors considered are chip size, total MESFET periphery, and process sensitivity. The cost of processing a wafer is relatively constant given a certain level of automation, so the more circuits per wafer, the lower the cost of the chip. Visual and dc yields seem to be weakly dependent on chip size and MESFET periphery. Slight variations in material and processing will cause a spread in RF circuit performance. Design centering will thus maximize yield, but it is also necessary to minimize the standard of deviation of RF performance by selecting phase shifter topologies that will minimize the process sensitivity factor.

The chosen lumped element topologies, shown in Fig. 3, have successfully realized both narrowband ( $L, C, X$ ) and wideband (3-6 GHz, 3-11 GHz) designs. The 180, 90, and 45 degree bits are FET-switched high-pass/low-pass structures, the 22 and 11 degree bits are FET-switched bridged T's, while the three LSB's are resonated FET's. The FET-switched high-pass/low-pass bits employ a series/shunt SPDT switch configuration ( $T_1$  and  $T_2$  in Fig. 3(a) and (b)) to select the proper filter. The high-pass and low-pass filters are realized with lumped elements, MIM capacitors and spiral inductors. The 180° bit uses five section filters, while the 45° and 90° bits use three section filters. For the FET-switched bridged T configuration, the switching FET's are integrated into high-

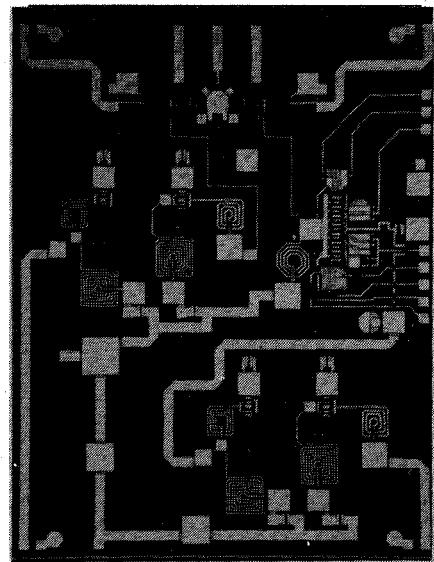



Fig. 4. Switch/amplifier MMIC (SCSWAMP).

pass/low-pass T filters. The high pass circuit is formed by a spiral inductor ( $L_1$  in Figure 3(c)) with  $T_1$  and  $T_2$  biased on and  $T_3$  biased off, while the low-pass circuit is formed by two inductive lengths of transmission line ( $l$  in Fig. 3(c)) and the "off" capacitance of one of the switching FET's ( $T_2$  in Fig. 3(c)). The inductors ( $L_1$  and  $l$  in Fig. 3(c)), and two of the switching FET's ( $T_2$  and  $T_3$  in Fig. 3(c)) are sized for proper phase shift, and one of the switching FET's ( $T_1$  in Fig. 3(c)) is sized for insertion loss balance between states. In the resonated FET configuration, the switching FET is parallel resonated with an inductor, realized with high impedance microstrip ( $l$  in Fig. 3(d)). The FET periphery ( $T_1$  in Fig. 3(d)) is selected to give equal insertion loss for both phase states, and the inductance is selected to give the desired phase shift. Chip size is 3.8 mm  $\times$  3.3 mm, while typical performance across the 256 phase states is 10 dB insertion loss,  $\pm 1.0$  dB maximum amplitude variation with less than 1 degree calibrated rms phase error. The input power at one dB compression is +22 dBm.

### Switch / Amplifier

The SCSWAMP "super-chip," shown in Fig. 4, is a wafer-probeable MMIC incorporating a transfer switch, gain blocks, and a variable gain amplifier.

The DPDT transfer switch is a wideband dc-18 GHz design using series and shunt FET's as switching elements. The switching FET appears as a low series resistance in the "ON" state, and a series resistance/capacitance in the "OFF" state. The switch configuration utilizes a pair of series/shunt switches in the beamformer port, and a pair of series switches for routing signals at the LNA/IN and PA/OUT junctions. Inductance, realized as high impedance microstrip, is employed to resonate out the capacitive component of the "OFF" state FET's. Typical performance of the switch is less than 2 dB

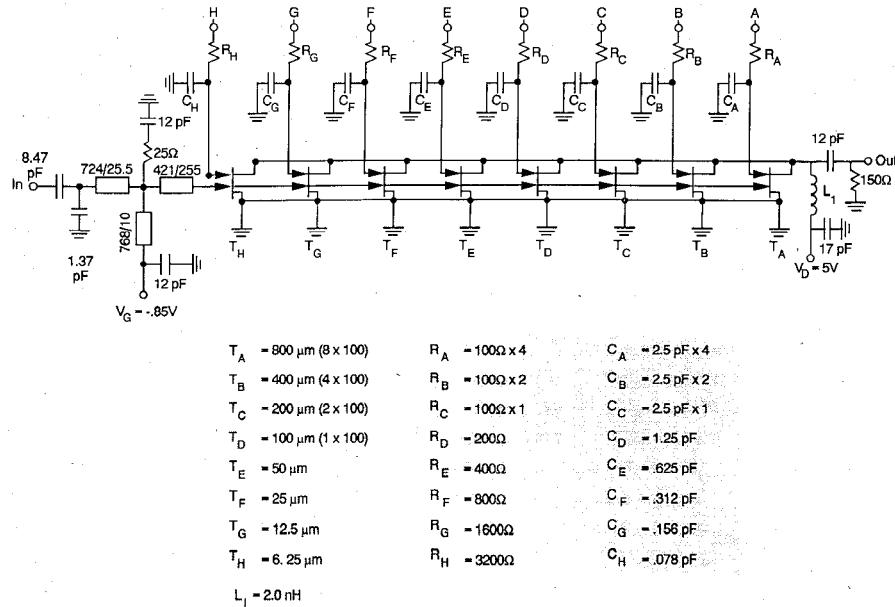



Fig. 5. Schematic of segmented dual gate VGA.

insertion loss per pole with better than 30 dB isolation through 18 GHz.

The variable gain amplifier, shown schematically in Fig. 5, is based upon the segmented dual gate FET approach [5], [6]. Conventionally, dual gate MESFET's have been used for gain control by applying an analog voltage to gate #2. The control is nonlinear and alters device impedances as shown in [5], making it difficult to provide a control voltage with precision and repeatability that does not alter phase while changing gain. In contrast, the segmented dual gate MESFET's (SDGFET's) obtain precise amplitude control with a minimum of incidental phase shift.

In this approach, the second gate of the dual gate MESFET is digitally-controlled to selectively switch ON/OFF portions of the SDGFET total gate periphery in order to achieve a desired state. The ON/OFF control is achieved by switching the gate #2 bias voltage levels between saturation and pinch-off, while the gate #1 voltage is held constant (control points A through H in Fig. 5). The reference maximum gain state of the SDGFET is when all segments of the device are biased on. A specific gain/attenuation level can be selected by turning off portions of the total SDGFET periphery. The gain of the device is proportional to the collective width of the on segments. The device is composed of segments integrated together by connecting the gate #1, source, and drain electrodes. The layout geometry of the segments is the same to preserve linear scaling of electrical parameters.

SDGFET devices are operated in a cascode configuration with the second gate RF grounded via a shunt capacitor ( $C_A$  through  $C_H$  in Fig. 5), and use resistors ( $R_A$  through  $R_H$  in Fig. 5) for isolation from the control voltage source. The relative phase shift of the SDGFET between states can be minimized by proper selection of the gate #2 termination capacitors. These capacitors scale

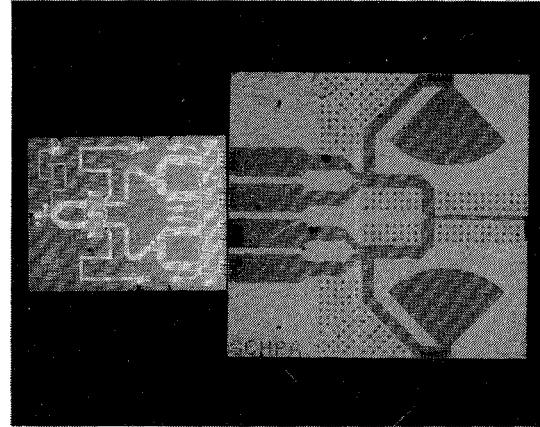



Fig. 6. Power amplifier MMIC (SCHPA).

in proportion to gate width of a particular segment, since the device impedance scales with gate width of a particular segment. If the segments are scaled in a binary fashion as in this case, ideally a linear voltage gain curve results with 6 dB steps between major bit transition states (such as 10000000 to 01111111). Antenna system analysis has shown that linear voltage scaling achieves a lower rms sidelobe level than the conventionally used dB scaling.

The gain blocks are based upon a self-biased shunt feedback amplifier for process insensitivity, and flat gain/good VSWR across the 3.0 to 6.0 GHz band. The self-bias arrangement, since it does not require a negative supply, has reduced the gate voltage modulation sensitivity of the module to power supply variation, and as a series feedback mechanism, has reduced temperature variation as well.

Switch/amplifier chip size is 3.8 mm  $\times$  4.7 mm, while typical performance is 9 dB forward path (switch to phase shifter) and 19 dB reverse path (phase shifter to switch)

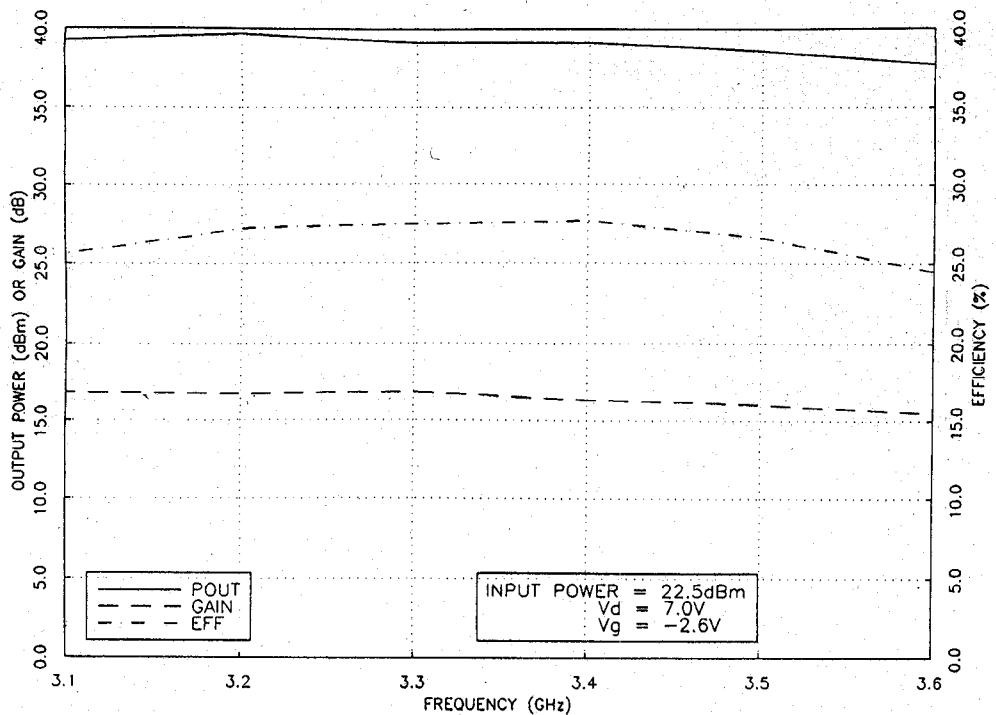



Fig. 7. Class AB performance of SCHA.

gain, with over 40 dB of gain control range in 256 linear voltage steps. Output third order intercept point ranges from +25 to +26 dBm across 3.0 to 6.0 GHz, while the 1 dB gain compression output power is +16 dBm.

#### Power Amplifier

The power amplifier shown in Fig. 6, has established a new standard for power output and bandwidth in MMIC form [7]. The amplifier consists of an 8 mm cell divided into two segments, driving four 8 mm cells, resulting in an overall gate periphery of 40 mm. The four output cells are then matched to  $50\ \Omega$  utilizing an off-chip matching network on 5 mil thick high dielectric constant ( $\epsilon_r = 37$ ) barium titanate material. This approach maximizes power output by reducing output network losses, improves chip cost by improving per wafer yield (smaller MMIC), yet maintains an amplifier envelope commensurate with a totally monolithic implementation. Chip size is 5.8 mm  $\times$  4.3 mm, while the output network measures 8.7 mm  $\times$  8.2 mm. In Class A operation, typical performance of the power amplifier versus frequency for a constant power input is a power output of  $11 \pm 1$  dB with an associated power gain of 10.5 to 12.5 dB. In Class AB at a lower drain voltage, 9 W at 27% power-added efficiency with 16 dB of power gain is typical at S-band as shown in Fig. 7. The test condition for this data was 100  $\mu$ s pulse width at 10% duty cycle. Additional performance data for other pulse widths and duty cycles can be found in reference [7].

#### Driver Amplifier

Fig. 8 is the driver amplifier (SCDR2), which like the power amplifier was processed at Harris Microwave Semi-

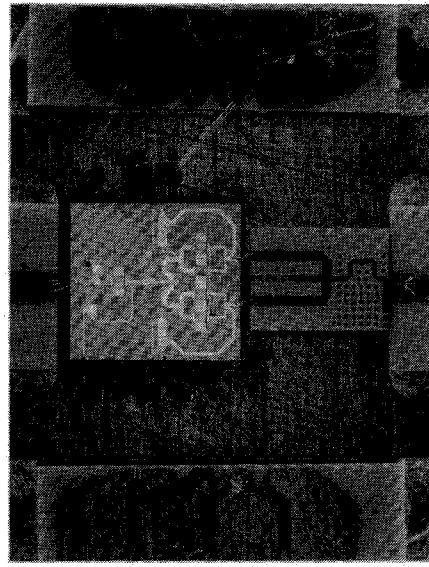



Fig. 8. Driver amplifier MMIC (SCDR2).

conductor using their 0.5  $\mu$ m P5 implant process. It produces 2 to 4 W with 16 dB power gain from 3.0 to 6.0 GHz. The design consists of a 2.4 mm cell driving four 2.4 mm cells, with a chip size of 4.6 mm  $\times$  4.2 mm. Like the power amplifier, the driver utilizes an off-chip matching network on 5 mil high dielectric constant material (4.0 mm  $\times$  3.0 mm).

#### Low Noise Amplifier

The two-stage MMIC low noise amplifier (SCLNA2) shown in Fig. 9, has established new benchmarks for wideband noise figure and LNA spur-free dynamic range

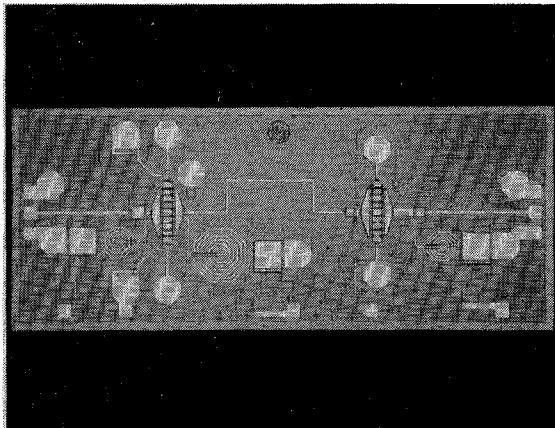



Fig. 9. Low noise amplifier MMIC (SCLNA2).

(SFDR) in MMIC form. It is based upon a  $0.5 \mu\text{m} \times 600 \mu\text{m}$  eight finger interdigitated HEMT device. The devices were fabricated on selectively doped AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE) on 50 mm diameter semi-insulating GaAs substrates. These HEMT's employ a large cross-section T-shaped plated gate and eight  $75 \mu\text{m}$  long gate fingers in order to minimize gate resistance. The epitaxial material layer structure consists of a 300 Å GaAs cap layer Si doped to  $5 \times 10^{18} \text{ cm}^{-3}$ , a 450 Å AlGaAs layer Si doped to  $2 \times 10^{18} \text{ cm}^{-3}$ , a 40 Å undoped AlGaAs spacer, and a 1  $\mu\text{m}$  undoped GaAs buffer layer. A 23% aluminum composition was used for the AlGaAs layers. Source inductive feedback is employed in both stages to bring input VSWR match into coincidence with input noise figure match. Shunt R-L feedback in the second stage is utilized for flat gain and good output VSWR match. The amplifier was fabricated at the General Electric Electronics Laboratory using a hybrid process consisting of optical stepper projection lithography with *E*-beam defined gates. Chip size measures  $3.9 \text{ mm} \times 1.6 \text{ mm}$ . Typical performance versus frequency is 16 to 18 dB of gain from 3.0 to 6.0 GHz, noise figure is less than 2.4 dB, and averaging 1.8 dB within the band. Input return loss varies from 12.5 dB to 5 dB, while output return loss varies from 25 dB to 8 dB, across the band. Output third-order intercept point of the MMIC amplifier ranges from +25 dBm to +27 dBm, with a corresponding spur-free dynamic range of between 78.4 dB/MHz and 79 dB/MHz. The 1 dB gain compression point output power occurs at +16 dBm.

#### Interface

Fig. 10 is the element control interface chip which solves the problem of interfacing a complex module with a large number of discrete lines and unique drive level requirements to a digital controller. It is impractical from a mechanical viewpoint to traverse the only available interface region of the module (the back end, whose width is determined by array pitch), with ten to a hundred control and power signals. In addition, the higher the number of interface lines, the better the potential for

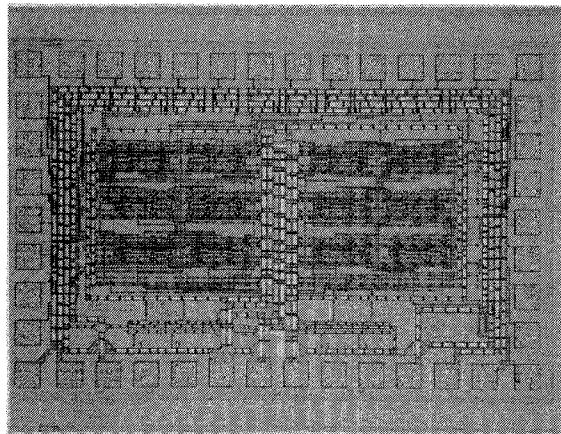



Fig. 10. Element control interface chip (ECI).

undesirable interference coupling from the digital beamsteering controller circuits. The ECI, shown in block diagram form in Fig. 11, functions as a serial-in/parallel-out shift-register/latch/driver, accepting serial TTL digital data input, providing appropriate voltage level outputs, and synchronized timing for T/R module mode switching. The ECI implemented in Tri-Quint enhancement/depletion digital GaAs using low power Buffered FET Logic provides these basic functions with output levels of 0 V and -3 V that are appropriate for the Harris 0.5  $\mu\text{m}$  G-10 process. The ECI is capable of switching and settling the worst case capacitive load of the VGA at 15 pF in less than 100 ns. Clock rate is specified as 25 MHz, and chip size is  $2.3 \text{ mm} \times 1.0 \text{ mm}$ .

#### MODULE CONSTRUCTION

Fig. 12 is a photograph of the wideband S/C-band T/R module. Although the measured performance includes the circulator, it is not shown in this photograph as it is located at the next level of assembly within the antenna system which integrates the beamsteering controller (BSC) with the T/R module. The T/R module package is a low parasitic, hermetic structure composed of base, ceramic mother substrate, ceramic wall, and lid. The base is molybdenum, which provides a good thermal interface and possesses a coefficient of thermal expansion compatible with both Alumina and GaAs. The mother substrate incorporates all RF circuitry on the top surface with thin film TaN resistors for voltage conditioning/50  $\Omega$  terminations and thick film multi-layer dc and control distribution on the backside. A full thick film plane has been devoted to HPA voltage distribution. Backside thick film ground planes minimize coupling and provide the reference ground plane for the frontside microstrip circuitry. Laser-tooled vias filled with thick film gold provide the connection to the top surface and cut-outs are provided for the MMIC chips. Spacers are utilized to maintain planarity. The ceramic mother substrate is sealed to the ceramic wall with low-temperature glass. Prior to integration of the power amplifiers, the mother substrate/frame combination is soldered to the base. The

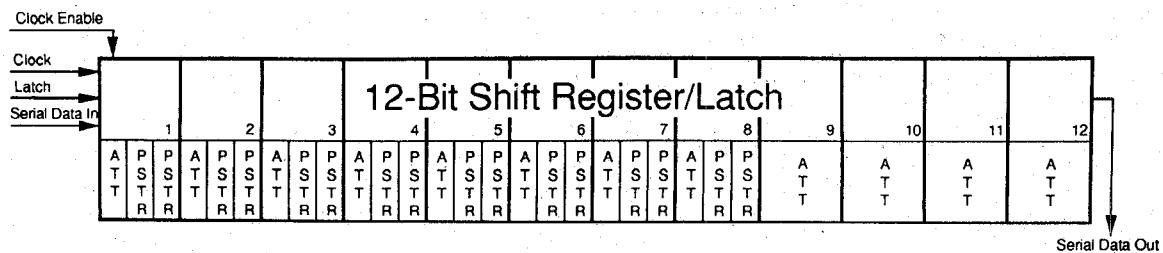



Fig. 11. Block diagram of ECI.

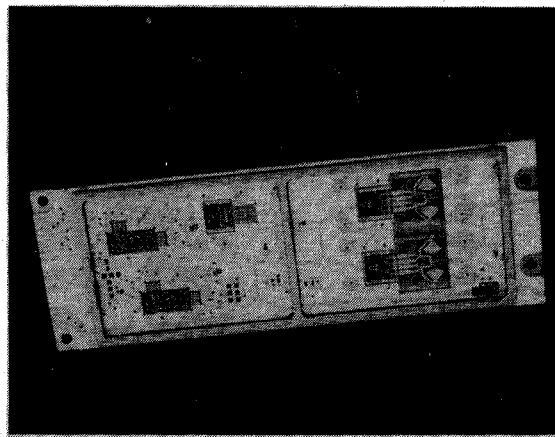



Fig. 12. Wideband S/C-band T/R module.

power amplifiers are then eutectically bonded into the package. RF tested small-signal devices are epoxied into the package. A machined metal lid with recessed cavities for inclusion of microwave absorber is incorporated to decrease the possibility of moding and enhance module stability since the gross small-signal gain of the module totals 50 to 60 dB. Module size including the circulator and lid is 4.4 in  $\times$  1.16 in  $\times$  0.5 in, which is compatible with the grid spacing required for grating lobe free operation over a  $\pm 45^\circ$  azimuth/ $\pm 60^\circ$  elevation scan angle.

#### MEASURED PERFORMANCE

Transmit and receive performance of a typical S/C-band T/R module is summarized in Table I. Six modules of this configuration were assembled, and reworked as necessary to achieve functionality. Since all the MMIC's utilized were from four lots of one to four wafers, performance was similar, and the sample size is statistically insignificant to draw any conclusions about module-to-module performance.

The measured performance in Table I is summarized in minimum, maximum, and rms over the 3.0 to 6.0 GHz frequency band. In addition, peak and rms performance is summarized over gain and phase states. These module level performance figures include all circuitry and the external circulator. Further detail plots as a function of frequency of receive gain for all 256 gain states, receive phase for all 256 phase states, noise figure, power output, and IMD versus input power are given in reference [8]. Peak performance within the 3.0 to 6.0 GHz band in-

TABLE I  
PERFORMANCE SUMMARY OF S/C-BAND T/R MODULE  
(3.0 TO 6.0 GHZ FREQUENCY BAND)

| Parameter                           | Min  | Max  | RMS   |
|-------------------------------------|------|------|-------|
| Receive gain (dB)                   | 25   | 38   | 30.9  |
| Gain range (dB)                     | 37   | 42   | 39.5  |
| Min gain resolution (dB)            | 0.03 | 0.04 | 0.035 |
| Max gain resolution (dB)            | 2.9  | 4.6  | 4.1   |
| Peak phase versus gain ( $^\circ$ ) | 2.5  | 18   | 8.6   |
| RMS phase versus gain ( $^\circ$ )  | 0.3  | 8.9  | 3.3   |
| Peak phase error ( $^\circ$ )       | 0.6  | 4.5  | 3.7   |
| RMS phase error ( $^\circ$ )        | 0.9  | 1.0  | 0.95  |
| Peak gain versus phase (dB)         | 0.6  | 3.5  | 1.6   |
| RMS gain versus phase (dB)          | 0.4  | 1.2  | 0.74  |
| VSWR-beamformer port                | 1.2  | 2.3  | 1.5   |
| VSWR-antenna port                   | 1.4  | 3.0  | 1.8   |
| Noise figure (dB)                   | 3.9  | 7.2  | 4.9   |
| Output IP <sub>3</sub> (dBm)        | 25   | 26   | 25.5  |
| Transmit gain (dB)                  | 33   | 46   | 38    |
| Output power (W)                    | 8    | 21   | 16    |
| Power-added efficiency (%)          | 5.8  | 14.2 | 10.8  |

TABLE II  
NOISE FIGURE VERSUS GAIN AT 3.2 GHz

| VGA State | G (dB) | NF (dB) |
|-----------|--------|---------|
| 255       | 36.5   | 3.99    |
| 32        | 20.8   | 4.09    |
| 16        | 16.1   | 4.26    |
| 8         | 9.5    | 4.90    |

cludes a power output of 21 W at S-band and 19 at C-band, a noise figure of 3.9 to 5.0 dB, 30 to 38 dB of receive gain, 40 dB of gain control in 256 steps and a +25 to +26 dBm output third order intercept point. IMD products are  $-55.9$  dBc for a  $-35$  dBm input at each tone at 4.4 GHz. Across a 30 dB receive gain adjustment range, the incidental phase shift is less than 8.9 degrees RMS, and below 3 degrees rms across 90% of the 3.0 to 6.0 GHz band. Calibrated rms phase error is less than 1 degree with less than 1.2 dB RMS amplitude variation. The worst case match at the beamformer port was 2.3:1, while at the antenna port, worst case was 3:1. Over 70% of the band, both ports are better than 1.5:1. The module requires 5.5 V at 600 mA and  $-3.5$  V at 160 mA in receive and an additional 9 V at 16 A during transmit in Class A operation. It is of note that due to the module architecture, both noise figure and IMD response degrade slowly with gain setting as shown in Tables II and III. Although the second stage contribution to noise figure is significant as described below, by positioning the variable gain amplifier last, the second stage noise figure

| TABLE III<br>IMD VERSUS GAIN AT 4.4 GHz (-35 dBm EACH TONE) |        |           |
|-------------------------------------------------------------|--------|-----------|
| VGA State                                                   | G (dB) | IMD (dBC) |
| 255                                                         | 32.4   | 55.9      |
| 128                                                         | 27.7   | 53.0      |
| 64                                                          | 23.2   | 52.3      |
| 32                                                          | 16.8   | 49.3      |
| 16                                                          | 12.0   | 48.2      |

| TABLE IV<br>GAIN/PHASE VERSUS TEMPERATURE/VOLTAGE |             |
|---------------------------------------------------|-------------|
| Gain versus temperature                           | 0.09 dB/°C  |
| Phase versus temperature                          | 0.16 deg/°C |
| Gain versus VDD                                   | 1.6 dB/V    |
| Gain versus VSS                                   | 2.2 dB/V    |

is almost invariant to VGA setting until shared leg gain is reduced below 10 dB. Similarly, because most of the gain is distributed at the back-end of the shared leg, the IMD determining element is the VGA. Segmented dual gate VGA's reduce output power capability 3 dB for every major bit transition of gain control. Hence IMD degrades gradually until gain is reduced to the point that previous stages contribute significantly. Likewise, due to the module architecture and the selected circuit topologies which were optimized for insensitivity, the gain and phase variation of the module to temperature and voltage given in Table IV is quite small.

#### PERFORMANCE ENHANCEMENT

This achievement can be attributed to accurate device models, a comprehensive design methodology, robust matching circuit topologies, and high yield processing as documented in the [3]–[5], [7], [9]. With improvement to module design in the areas of isolation, shielding, and grounding, enhanced smoothness of frequency response has been realized in an iteration of this design. Advances in device technology will also yield improvements in performance. For example, the low noise amplifier shown in Fig. 9, has been reprocessed using a pseudomorphic HEMT layer structure. The results shown in Fig. 13 are outstanding with an improved gain of 23 dB, and noise figure of less than 2.0 dB, reaching 1.5 dB at midband. The present module noise figure response is composed of the elements in front of the LNA, Trak 59A6201 circulator (0.6 dB), package insertion loss (0.1 dB), Alpha CLA3134 limiter diode/dc return (0.5 dB), LNA noise figure, and a large second-stage contribution due the gain of the conventional HEMT LNA and the dual channel receive signal split (the second stage noise figure of the Lange coupler/shared leg is 14 to 16 dB). The PHEMT MMIC LNA, incorporated into the iterated module design, has yielded a 3.0 dB module level noise figure. Similarly, a power device with improved structure will dramatically improve power-added efficiency. Although the Harris Microwave Semiconductor 0.5  $\mu$ m MESFET foundry is high yield and versatile, the efficiency performance as a power amplifier is limited by use of a single

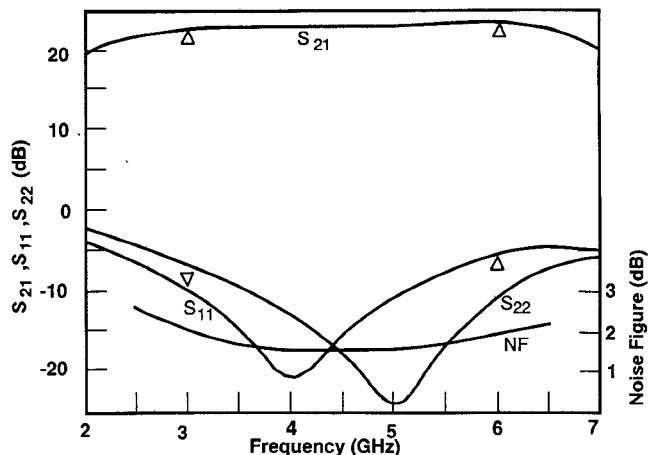



Fig. 13. Gain/noise figure/return loss of PHEMT SCLNA2.

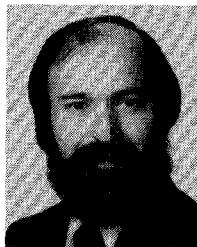
implant. A p-type beryllium co-implant beneath the channel yields better electron confinement and a sharper pinch-off. The result is more constant transconductance, higher gain, improved power density and efficiency. A two stage driver amplifier, equivalent to that shown in Fig. 8, using an improved 0.5  $\mu$ m MESFET based on this technology has been fabricated at the General Electric Electronics Laboratory. It has achieved 4 W at 36% power-added efficiency.

#### PERFORMANCE COMPARISON

The measured performance described herein is based upon first pass MMIC and first pass module design and fabrication, and includes circulator, packaging, digital interface, and power conditioning losses. Although the literature is scarce as to module level performance, what has been published at the module level [10]–[12] is eclipsed by orders of magnitude in every parameter by these results.

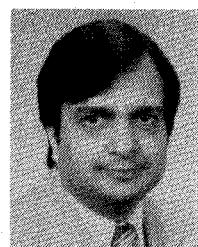
#### CONCLUSION

A complex wideband transmit/receive module has achieved performance levels superior to any MMIC module. The module incorporates a compact digital interface, requires only three supply voltages, and utilizes advance packaging techniques, resulting in a size compatible with a grating lobe free grid spacing.


#### ACKNOWLEDGMENT

The authors would like to acknowledge the many individuals at General Electric who contributed to the design, fabrication, and processing of the described circuits. In particular, A. Jacomb-Hood, C. Grondahl, and T. Cokinos for chip design, E. Lewis for MMIC layout, W. Kong for HEMT processing, C. Low, A. Sun, and M. Katz for module fabrication, A. Thatcher for assembly, R. Clark and S. Miller for module engineering, and H. Marcus for mechanical design. We would also like to acknowledge the contributions of Harris Microwave Semiconductor and Tri-Quint Semiconductor for foundry service.

## REFERENCES


- [1] A. K. Agrawal and N. R. Landry, "Independent control of sum and difference patterns in active phased array antennas," in *IEEE Int. Antennas Propagat. Symp. Dig.*, San Jose, CA, June 26-30, 1989, pp. 392-395.
- [2] A. K. Agrawal and N. R. Landry, "Monopulse phased array antenna with plural transmit-receive module phase shifters," U.S. Patent 5 017 927, May 21, 1991.
- [3] A. W. Jacomb-Hood, J. A. Windyka, M. S. Booth, K. H. Snow, and S. B. Adams, "C-band phase and gain control MMIC," in *IEEE GaAs IC Symp. Dig.*, Nashville, TN, Nov. 6-9, 1988, pp. 257-260.
- [4] A. W. Jacomb-Hood, S. B. Adams, V. S. Wang, and S. J. Grzymala, "A six-bit C-band phase shifter designed for small size and process insensitivity," in *1987 GOMAC Dig.*
- [5] K. H. Snow, J. J. Komiak, and D. A. Bates, "Segmented dual-gate MESFET's for variable gain and power amplifiers in GaAs MMIC," *IEEE Trans. Microwave Theory Tech.*, vol. 36, no. 12, pp. 1976-1985, Dec. 1988.
- [6] Y. C. Hwang and Y. K. Chen, "Signal scaling MESFET of a segmented dual gate design," U.S. Patent 4 734 751, Mar. 29, 1988.
- [7] J. J. Komiak, "Design and performance of an octave band 11 watt power amplifier MMIC," *IEEE Trans. Microwave Theory Tech.*, vol. 38, no. 12, pp. 2001-2006, Dec. 1990.
- [8] J. J. Komiak and A. K. Agrawal, "Octave S/C-band MMIC T/R modules for multi-function phased arrays," *IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig.*, Boston, June 10-11, 1991, pp. 35-38.
- [9] J. J. Komiak, "Solid state power amplifiers: Active device comparisons, design techniques, S-band thru millimeter waves," *IEEE Solid State MMIC and MIC Power Amplifier Workshop*, in Boston, June 14, 1991.
- [10] M. Priolo, G. St Onge, W. Coughlin III, J. Bugeau, and D. Meharry, "Transmit/receive modules for 6 to 18 GHz multifunction arrays," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Dallas, TX, May 8-10, 1990, pp. 1227-1230.
- [11] M. J. Schindler, S. L. Chu, T. E. Kazior, A. M. Bertrand, and K. M. Simon, "A single chip 2-20 GHz T/R module," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Dallas, TX, May 8-10, 1990, pp. 117-120.
- [12] W. R. Wisseman, L. C. Witkowski, G. E. Brehm, R. P. Coats, D. D. Heston, R. D. Hodges, R. E. Lehman, H. M. Macksey, and H. Q. Tserng, "X-Band GaAs single chip T/R Module," *Microwave J.*, vol. 30, no. 9, pp. 167-173, Sept. 1987.

**James J. Komiak** (SM'90) was born in Chicago, IL, on October 16, 1953. He received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Cornell University, Ithaca, NY in 1974, 1976, 1978, respectively. His Ph.D. research was directed towards a novel broad-band matching technique for arbitrary loads using measured data directly.



In 1983, he joined General Electric, Aerospace Technology Operation, Electronics Laboratory, Syracuse, NY where he is presently Principal Staff-Microwave and Millimeter-Wave Technology. Previously, between 1978 and 1983, he was with IBM Federal Systems Division, Owego, NY, where he was responsible for ESM/ELINT antenna and receiver development. His current activities include technical/management in the areas of MMIC and hybrid MIC circuit and T/R module designs for radar, ECM, shared aperture, and communication system applications. Over 51 MMIC's covering L-band to 60 GHz, have been designed individually, with consultation on many more. Previous experience includes design of mil-spec analog, digital, RF, and microwave sub-systems.

Dr. Komiak is a member of the Association of Old Crows and the MTT Transactions Editorial Review Board. He has 34 publications and 2 patents relating to circuit theory, GaAs MMIC devices and technology, solid-state apertures, and RF/microwave design.



**Ashok K. Agrawal** (S'76-M'79-SM'82) received the M.S. and Ph.D. degrees in electrical engineering from the University of New Mexico, Albuquerque, in 1976 and 1979, respectively.

From 1973 to 1974, he was a Research Fellow at the Indian Institute of Technology, Kharagpur, India. From 1976 to 1982, he worked as a Research Scientist at the Mission Research Corporation in Albuquerque, and from 1982 to 1983 as a Senior Research Engineer at the Dikewood Corporation in Albuquerque. During 1982-1983, he also was an adjunct faculty member at the University of New Mexico, where he taught graduate courses on antennas. In 1983 he joined the Government Electronic Systems Division of the General Electric Company in Moorestown, NJ, as a principal member of the engineering staff. Since then, he has been involved in research and development work on phased array and microwave antennas. His current research includes active phased array antennas and T/R modules.

Dr. Agrawal has published and presented over 25 papers on printed circuit antennas, microwave circuits, multiconductor transmission lines, electromagnetic coupling, lightning, and EMP, and holds two U.S. patents. He was Vice Chairman of the APS/MTTS/EMC Albuquerque Chapter during 1982-1983 and Chairman of the APS/MTTS Philadelphia Chapter during 1986-1987. He was Chairman of the Benjamin Franklin Symposium held in Cherry Hill, NJ, in 1987. He is a member of Tau Beta Pi.